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Abstract— This paper presents a Relative Point Algorithm. 

The Relative Point algorithm uses 3D points as input. Multiple 

observations of the same point are stored untransformed in a 

data structure. The previous iterations untransformed points 

are used to register the next iteration’s points, neglecting the 

use of current position for registration. Points that are visible at 

the same time interval are grouped together. A relative map of 

each group is computed from the stored untransformed point’s 

average distance from an axis computed from three basis points. 

The use of the basis points allow the average to be translation 

and rotation invariant. The relative maps are combined using 

points present in multiple groups with least squared fitting. 

Current position is generated at the end of each iteration by 

least square fitting the current observation of points to their 

globally map positions. Current position is used locally for 

backtracking and only globally for closing the loop. It is 

possible to not use current position at all and instead rely on 

point merging that has a higher computation overhead. The 

untransformed observations are also used in future computation 

to form better groupings and dynamic point detection. The 

Relative Point algorithm is shown to have O(nalogna) 

computation complexity where na is the average quantity of 

points seen. Its average run time given an average of 100 

observed points per iteration is two milliseconds. The total 

quantity of points does not affect the run time. The accuracy of 

the Relative Point algorithm is shown to be comparable to a 6D 

no odometry EKF in a simulation using white Gaussian noise, 

and is able to identify dynamic points in O(nlogn) time. 

I. INTRODUCTION 

This paper works on the Simultaneous Localization and 

Mapping (SLAM) problem using simulated 3D points as 

input and no odometry. Algorithms such as the Extended 

Kalman Filters (EKF) [1] with submapping [2] and 

FastSLAM [3][4] have been used to solve this problem.  

Perhaps the main difference to previous work is that this 

algorithm is based on using data structures and optimization 

algorithms. There has been similar work in the past with 

submapping [2][3][5] (and many others) and the use of 

relative location [6][7]. 

Imagine a group of 3D point landmarks being observed 

from a stationary viewpoint with observational noise. 

Computing the average (x,y,z) location from the viewpoint 

over many iterations will yield an accurate map. If the 

viewpoint is moving, the average location calculation needs 

to be made invariant to the movement. It is possible to do 

this by assigning three landmarks to act as a basis of the 

calculation. One of the landmarks can be set to being (0,0,0) 

for translation invariance. The other two landmarks can be 

used to construct consistent axes from the (0,0,0) landmark 

for rotation invariance. The map created is now relative to 

these basis points. 

As the viewpoint moves, landmarks leave the view and 

new ones appear. Landmarks that are observed in the same 

time interval are grouped together. The first group consists 

of landmarks viewed in the first iteration. Every other group 

consists of previously grouped and newly observed 

landmarks. The first group is aligned to the global map by 

performing a Least Square Fitting (LSF) [8] between the 

landmarks relative locations and their first observations. This 

assumes that the viewpoint in the first iteration was at 

location (0,0,0). Every other group has LSF performed using 

the previously mapped landmarks global location’s to their 

relative location in the group. 

Much of the advantages of the Relative Point algorithm 

come from its philosophy of retaining past untransformed 

observations. The previous iteration’s untransformed 

landmarks are used in landmark registrations. Errors in 

current position, perhaps due to dynamic landmarks do not 

affect the registration process. After sufficient iterations, a 

landmarks grouping is revaluated to maximize its calculation 

interval. It is possible to change groupings and to recompute 

past iterations since the past untransformed observations are 

available.   

During the regrouping process, there are enough iterations 

available to identify dynamic landmarks. Pair wise 

comparisons can be made using the past untransformed 

observations. Landmark pairs with a low standard deviation 

of distance to each other over a time interval can be binned 

together. An approximation can be made that only one 

landmark per bin needs to be compared against another bin. 

Two heuristics are used: if one bin has a majority of 

landmarks the algorithm can be stopped, and to prioritize 

bins with past positive comparisons. The dynamic detection 

algorithm is O(nlogn), even if a high percentage of 

landmarks are uncorrelated. 

Landmarks are grouped together with other landmarks that 

are observed at the same time. A group is created a few 

iterations after a landmark is first seen. These first groupings 

are revaluated later to create groups with larger calculation 

intervals, and to perform dynamic point detection.  Local 

relative maps are computed for each group, which are then 

joined with LSF to form a global map. Current position is 

recalculated every iteration by comparing currently seen 

landmarks to their global positions using LSF. Current 

position is used locally for matching landmarks due to 

backtracking and globally for closing the loops. It is possible 

to completely avoid the use of current position by instead 

relying on landmark merging. The Relative Point algorithm 

only recomputes landmarks seen in the current observation 

and is shown to be O(nalogna) where na is the average 

quantity of observed points. The total quantity of landmarks 
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does not affect the execution speed. The Relative Point 

algorithm is shown to have a quick base speed, operating at a 

few milliseconds with a hundred average observed 

landmarks.  It is also shown to have comparable accuracy to 

a 6D no odometry EKF, and is able to identify dynamic 

points. 

II. DESCRIPTION 

The Relative Point algorithm consists of many object 

oriented classes. These classes are described in the four 

different phases of the algorithm: registering points, 

computing groups, creating groups, and global matching. 

A. Registering Points 

The Point class represents an observation of an 

untransformed point.  It consists of a (x,y,z) location and a 

time variable describing which iteration the point is observed 

in. 

The RltPoint class consists of a circular array of Points.  Its 

main responsibility is to enumerate Points given a time 

interval. 

The RltPointCharting class charts a reference to every 

RltPoint seen in a given iteration.  Its main responsibility is 

to enumerate a list of RltPoint references given a time 

interval. It uses a hash table for duplicate detection. It is used 

in both point matching and group creation. 

The OVLPQuadTree is an overlapping quadtree that 

performs spatial subdivision for point matching.  Each cell in 

the quadtree overlaps adjacent cells by the maximum point 

matching bound. This allows the point matching to only have 

to query one cell. In experimentation, it is shown to be faster 

than a kd-tree and octree depending on the point density. 

Point matching begins by initialization the OVLPQuadTree 

with the past few iterations of Points.  Then 

RltPointCharting is enumerated for the past few iterations. 

For every RltPoint enumerated, its most recent Point is 

obtained and added to the OVLPQuadTree. After the 

initialization, every new untransformed point from the 

current iteration is compared to Points in the 

OVLPQuadTree. If an untransformed point matches, it is 

added to the matching RltPoint. Otherwise global matching 

is used to see if there is a match. Global matching is 

described later.  If there is still not a match, a new RltPoint is 

created. The matching RltPoint is then added to 

RltPointCharting for the next iteration. 

B. Map Creation 

Each RltPoint can belong to multiple groups. The 

RltGroupRef class is used to store a reference to each group 

a RltPoint is in. 

The RltLSF class performs the Least Square Fitting (LSF) 

[8] algorithm between two point clouds. It returns a matrix 

that can transform the location of a point from one point 

cloud to the other.  

The RltGroup class stores a reference of every RltPoint in 

the group. It is used to compute the RltPoint’s relative and 

global locations. 

When a Point is added to a RltPoint, the RltPoint notifies 

all of its RltGroups using the RltGroupRef. When notified, 

the RltGroup adds itself to the list of RltGroups to be 

recomputed in the current iteration. Before it does the 

computation, the RltGroup first checks to see if every 

RltPoint has a new observation in a given iteration. If one 

RltPoint does not, it exits. 

 The architecture of the Relative Point algorithm is 

designed so that the grouping decisions and dynamic point 

detection is done at a level above the RltGroup. If there is a 

change, a new RltGroup is created. This allows a RltGroup 

to use the same three basis points to form the transformation 

matrix that makes the relative map translation and rotation 

invariant. For a new iteration, first the three basis points are 

used to compute the transformation matrix. The basis is 

created by setting the first basis point to being at location 

(0,0,0), the second one is placed on the negative x axis and 

the third is placed on the xz plane.  

After the basis transform is computed, each untransformed 

point for a given iteration, for each RltPoint is transformed 

to relative coordinates. The relative location is added to the 

RltPoint’s average relative location. If the RltGroup is 

created in the first iteration, every RltPoint’s relative 

location versus its first observation is used for LSF. If the 

RltGroup is created with previously grouped points, every 

previously grouped RltPoint’s relative location versus its 

known global location is used for LSF. The matrix returned 

by the RltLSF class is used to compute the global location of 

RltPoints that have not been previously mapped in other 

groups. 

C. Group Creation 

The RltInterval class stores the time intervals in which a 

RltPoint is observed. It is updated every iteration a RltPoint 

is seen. Its main function is a combine function performs a 

union of two RltIntervals. 

The RltUngroupedList class maintains a sorted by iteration 

list of RltPoints. It is used to keep track of RltPoints that 

have not been grouped yet. This avoids an enumeration over 

all RltPoints.  

The RltMapper class performs much of the high level 

functionality of the algorithm. It is the entry point of the 

algorithm and performs the group creation.  

When a RltPoint is first created, it is added to a 

RltUngroupedList. This list is queried in RltMapper when 

checking for RltPoints that have not been grouped yet. When 

a RltPoint has sufficient iterations, the group creation 

algorithm attempts to create a RltGroup to put it in. That 

RltPoint is referred to as the creation RltPoint. 

The group creation algorithm starts by obtaining the 

iteration that the creation RltPoint is first observed. It then 

queries RltPointCharting to create two lists. One list has 

RltPoints that are already grouped and present in the interval 

of the creation RltPoint. The other list has RltPoints that 

have not been grouped yet, and present in the interval of the 

creation RltPoint. Both lists are sorted by order of the 

greatest quantity of iterations in the interval of the creation 

RltPoint.   



 

 

 

 

 Next, RltPoints are selected from both lists to form a 

group. It is unlikely that any of these RltPoints are present in 

the complete interval of the creation RltPoint. A compromise 

of a reduced calculation interval versus number of RltPoints 

has to be reached. Either constants can be used to reduce the 

interval or a heuristic can be used. The heuristic is to add the 

three best previous RltPoints and the creation RltPoint to the 

RltGroup and combine their intervals together. Then by 

order of best interval, RltPoints from the sorted lists are 

tested to see if they would improve the group. The test 

consists of combining the interval of a RltPoint to the 

RltGroup’s interval. If quantity given by the combined 

interval size multiplied by the number of RltPoints increases, 

the RltPoint can be added to the RltGroup. RltPoints from 

the sorted lists are tested until one RltPoint fails the interval 

test. 

 Before the RltPoints placement in the RltGroup can be 

finalized, dynamic detection is performed. Each RltPoint is 

placed in a bin. Using a hash table, the bin stores every 

RltPoint the bin has already been compared to, to avoid 

duplicate comparisons. For every iteration of the algorithm, 

each bin is compare to one other bin that it has not been 

compared to before. Using the untransformed points from 

one RltPoint per bin, the standard deviation of their distance 

to each is other calculated during the RltGroup’s interval. If 

the standard deviation is less than a threshold, then the bins 

are merged. Otherwise their hash tables are set so the two 

bins are not compared to each other again.  

The standard deviation threshold is selected by saving the 

standard deviation of the first iteration’s comparisons. These 

saved standard deviations are sorted from lowest to highest. 

The threshold is selected by enumerating the sorted list until 

the next standard deviation is percentage wise much larger 

then the previous. This operation is integrated into the rest of 

the dynamic detection algorithm so it does not require extra 

comparisons. 

 The dynamic detection has the possibility to degrade to 

O(n
2
) if the number of uncorrelated RltPoints is high. Two 

heuristics are used that allow the detection to occur at 

O(nlogn). One is: that if one bin has a majority of RltPoints, 

the dynamic detection runs for one more iteration. The last 

iteration compares every bin that the majority bin has not 

been compared to, to the majority bin. Any positive 

comparisons are merged to the majority bin. The other 

heuristic is to prioritize bins that have a positive comparison 

in the previous iteration of the dynamic detection. The 

dynamic detection is shown to be O(nlogn) even with a very 

high quantity of uncorrelated points. 

 After the group is created, three RltPoints are chosen to be 

the basis of the relative map. If the three basis RltPoints are 

collinear then the basis will not be rotational invariant. Care 

is taken to chose RltPoints that are spaced far apart and non 

collinear.  

 The group creation can be run several times for each 

RltPoint. It is first run a few iterations after a RltPoint is first 

seen to initially place the RltPoint on the map. It can then be 

run a second time after more iterations have occurred. 

Additional grouping can be delayed up to the point where the 

RltPoint is no longer visible. The first RltGroup grouping 

checks periodically to see if there is at least one RltPoint in it 

that does not have a second grouping. If every RltPoint has a 

second grouping, that RltGroup is redundant and removes 

itself from the map. 

D. Global Matching 

If an untransformed landmark observation fails to match to 

the previous iterations untransformed observations, there is 

the potential that the landmark has been seen before, but not 

recently. This can occur when the viewpoint is backtracking 

or closing a loop. In this case, global matching is used. The 

Fig. 2.  Side view of the figure eight path of the simulation. 

  

 
Fig. 1.  Top view of the figure eight path of the simulation. 

  

 
Fig. 3.  Close up of the figure eight.  The Green boxes are where RltPoints 

are mapped to, red boxes are the current observation.  The lines go from the 

centriod of each RltGroup to every RltPoint in it.   



 

 

 

 

matching uses current position. Current position is generated 

by performing a LSF using the current untransformed 

observations, compared to their global positions. 

Current position is used to transform the untransformed 

landmark into global space. It is then matched to the global 

overlapping quadtree. If there is a successful match, it is 

added to that RltPoint and thus RltPointCharting, so the next 

iterations untransformed observation will automatically 

match to it. Note that in the case of backtracking, the current 

position needs only to be locally accurate as the current 

position is directly related to the map. However, in order to 

successfully close the loop, the current position needs to be 

globally accurate within the matching bound. 

There is the possibility that if an untransformed 

observation has sufficient observational noise and with 

current position error, an untransformed observation can fail 

to match to its RltPoint global location. If this happens, a 

new RltPoint is created. After a few iterations of averaging 

its relative location, the new RltPoint’s global location 

should be approximately the same as the one it should have 

matched to. If this occurs a merging routine detects this 

situation and merges the two RltPoints. RltPoints are merged 

by copying over the untransformed observations, from the 

newer RltPoint to the older one. Then the older RltPoint is 

recomputed over its now larger time interval. It is possible 

not to use current position at all and instead rely on the point 

merging. This would come at a cost of higher overhead. 

III. RUN TIME PERFORMANCE 

The Relative Point algorithm is tested in a simulation of a 

figure eight path. The  results are shown in Figure 1, Figure 

2 and Figure 3.   

The simulation starts at the middle and travels the right 

loop counter clockwise with a slight incline. When it reaches 

the middle it is well above the starting point. It then travels 

the left loop clockwise with a slight decline, returning to the 

starting point when the left loop is complete. 

Figure 4 shows the execution time for a simulation of the 

figure eight seen in Figure 1. Notice that the linear regression 

of the execution time is flat. This verifies that the Relative 

Point algorithm’s run time is proportional to the average 

quantity of points observed in a given iteration. 

Figure 5 shows the execution speed of the Relative Point 

algorithm with increasing point densities of the figure eight 

simulation. The density is the average number of points per 
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Fig. 4.  Execution time of the Relative Point algorithm with approximately an 

average of 100 points per a given observation.  The linear regression is flat 

denoting that the average time does not increase as more points get mapped. 

  

Quadtree with Octtree replacement at 400
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Fig. 5.  Execution time with different average point densities of the figure 

eight.  The quadtree structure degrades and become polynomial at the 400 

points per 100 unit length density.  It is replaced by an octree at the 400 

point density.  The octree has a high initialization but retains its O(nlogn ) 

computation complexity.  

 
Fig. 6.  Dynamic point detection with 0% to 40% points being uncorrelated.  

Only the 40% is near the nlogn line. 

Fig. 7. Dynamic point detection with 40% to 50% points being 

uncorrelated.  Only at about the 47% line does the algorithm start to 

degrade. 



 

 

 

 

Fig. 8.  Comparison of the Relative Point algorithm to the EKF. 

  
100 unit length. The viewing frustum is 70 units length but 

due to overlaps in turns the average density is approximately 

the same number as the average points per iteration. It was 

found that the algorithm starts to become polynomial as the 

point density increases. This was shown to be due to the 

quadtree losing its O(nlogn) execution time. At the 400 point 

density, the quadtree is replaced with an octree. A kd-tree is 

tested but is shown to be slower than both the quadtree and 

octree. The octree has a higher initialization but retains its 

O(nlogn) execution time. 

The dynamic detection algorithm is evaluated for different 

percentages of uncorrelated points. Figure 6 shows the 

results of the percentage of uncorrelated points being 

between 0 and 40%. Notice that only the 40% line 

approaches O(nlogn). Figure 7 shows that the dynamic 

detection only starts to degrade at about the 47% line.   

IV. ACCURACY COMPARISON TO EKF 

The Relative Point algorithm is tested against a 6D no 

odometry EKF [9] obtained from the Mobile Robot Toolkit 

[10].  The point density is reduced to 25 points per 100 units 

length to allow the EKF to run.  The observation noise is 

white Gaussian noise. Since the point density has a random 

distribution, reducing the density further can cause the 

number of observed points to go below the minimum for the 

Relative Point algorithm. Figure 8 shows the landmark error 

for 900 iterations. Unfortunately at about 900 iterations, the 

EKF run time was approaching 1 second per iteration and 

slowing down further, so the testing stopped. The average 

Relative Point algorithm run time was about 1 ms. 

Figure 8 and Figure 9 shows that the accuracy of the 

Relative Point algorithm is similar to the EKF. Notice in 

Figure 8, that spikes in errors occur in similar places. The 

Relative Algorithm has sharper spikes of errors and then 

reductions due to the accuracy increases of the regouping 

process. Notice that in some places in Figure 9, the Relative 

Algorithm has greater location error then the EKF even 

though its landmark positions are more accurate for the same 

time iteration. This is due to the fact that the Relative 

Algorithm position is not cumulative. The accuracy of 

current position in the Relative Algorithm is related to the 

accuracy of the map, and the noise in the current 

observations. 

Figure 10 shows the position error if the viewpoint does 

not move in the simulation. For both algorithms the error 

decreases. 

Both algorithms are tested with dynamic points. Not 

surprisingly the EKF loses track while the Relative Point 

algorithm is able to identify and not use the dynamic points 

for the map. It is interesting to note that even before the 

dynamic point detection, the Relative Point algorithm is 

more robust than the EKF due to the use of untransformed 

observations for point registration. 

Fig. 9. Position error of the EKF versus Relative Point algorithm. 

  

Fig. 11. Landmark accuracy of 40 passes of the figure eight. 

  

Fig. 10. Landmark error with a stationary viewpoint.  



 

 

 

 

The Relative algorithm is tested with 30% of the point in 

the figure eight simulation being dynamic. The mapping 

errors are slightly higher than the simulation without noise, 

but the error is small enough so that the algorithm can close 

the loop. The increase of errors can perhaps be due to having 

less static points available for the map, or perhaps due to 

dynamic points crossing static ones and creating point 

registration issues. 

The purpose of the comparisons is not to rank the 

accuracy of the algorithms versus the other. Rather it is to 

verify that the Relative Point algorithm has similar accuracy 

to an implementation of an EKF. It is interesting to note that 

even though the algorithms are different, the increases in 

landmark error appears correlated between the two 

algorithms. 

V. LONG TERM ACCURACY TESTING 

Figure 10 poses an interesting question.  If the landmark 

error decreases after many iterations where the viewpoint is 

stationary, should the landmark error decreases after many 

loops of the figure eight? 

Figure 11 shows the landmark error of 40 passes through 

the figure eight. The landmark error in Figure 11 decreases 

similarly to Figure 10, which has a stationary viewpoint. 

It is interesting to look at position error in y direction 

shown in Figure 12. The position error in y direction is 

similar to the x and z graphs so they are not shown. The error 

is periodic and after many runs, the error seems to converge 

rather than decrease. It is not known why the error does not 

further decrease to zero. There can be an issue with bias in 

the simulated noise or there can be an issue with the Relative 

Point algorithm. Perhaps the fact that the comparisons are 

discretized into groups leads to the result shown in Figure 

12. The error though is very small considering the path 

length is about 1200 units and the observational noise is a 

maximum of 1 unit for each direction. 

VI. CONCLUSION 

The Relative Point algorithm has a worst case 

computation complexity of O(nalogna), where na is the 

average quantity of points visible at the same time. The 

computational complexity is dependent on the data structures 

used, in particular the structure used to do the point 

matching. It is important to tune the quadtree or octree so 

that it maintains its O(nlogn) computation complexity. The 

average computation time of the 550 points per 100 units 

figure eight simulation is 18 ms per iteration where there is 

an average of 537 points per observation and 8980 total 

points on an AMD 64 3400+. The Relative Algorithm is able 

to identify dynamic points in O(nlogn) time, and is shown to 

work with a large percentage of points being dynamic. 

The accuracy of the Relative Point algorithm is compared 

to a 6D EKF implementation that does not use odometery. 

The accuracy of the Relative Point algorithm is shown to be 

comparable to the EKF. 

The accuracy of the Relative Point algorithm is evaluated 

by having the robot loop through the same figure eight many 

times to see if the error approaches zero. After many runs, 

the error appears to be reduced to having a small bias. It is 

not known if this bias is due to the algorithm, or due to a bias 

in the noise of the simulated environment. 
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Fig. 12. Position error in y direction for 40 passes of the figure eight. 

  


