

Jay Kraut

Abstract— This paper presents a Relative Point Algorithm.

The Relative Point algorithm uses 3D points as input. Multiple

observations of the same point are stored untransformed in a

data structure. The previous iterations untransformed points

are used to register the next iteration’s points, neglecting the

use of current position for registration. Points that are visible at

the same time interval are grouped together. A relative map of

each group is computed from the stored untransformed point’s

average distance from an axis computed from three basis points.

The use of the basis points allow the average to be translation

and rotation invariant. The relative maps are combined using

points present in multiple groups with least squared fitting.

Current position is generated at the end of each iteration by

least square fitting the current observation of points to their

globally map positions. Current position is used locally for

backtracking and only globally for closing the loop. It is

possible to not use current position at all and instead rely on

point merging that has a higher computation overhead. The

untransformed observations are also used in future computation

to form better groupings and dynamic point detection. The

Relative Point algorithm is shown to have O(nalogna)

computation complexity where na is the average quantity of

points seen. Its average run time given an average of 100

observed points per iteration is two milliseconds. The total

quantity of points does not affect the run time. The accuracy of

the Relative Point algorithm is shown to be comparable to a 6D

no odometry EKF in a simulation using white Gaussian noise,

and is able to identify dynamic points in O(nlogn) time.

I. INTRODUCTION

This paper works on the Simultaneous Localization and

Mapping (SLAM) problem using simulated 3D points as

input and no odometry. Algorithms such as the Extended

Kalman Filters (EKF) [1] with submapping [2] and

FastSLAM [3][4] have been used to solve this problem.

Perhaps the main difference to previous work is that this

algorithm is based on using data structures and optimization

algorithms. There has been similar work in the past with

submapping [2][3][5] (and many others) and the use of

relative location [6][7].

Imagine a group of 3D point landmarks being observed

from a stationary viewpoint with observational noise.

Computing the average (x,y,z) location from the viewpoint

over many iterations will yield an accurate map. If the

viewpoint is moving, the average location calculation needs

to be made invariant to the movement. It is possible to do

this by assigning three landmarks to act as a basis of the

calculation. One of the landmarks can be set to being (0,0,0)

for translation invariance. The other two landmarks can be

used to construct consistent axes from the (0,0,0) landmark

for rotation invariance. The map created is now relative to

these basis points.

As the viewpoint moves, landmarks leave the view and

new ones appear. Landmarks that are observed in the same

time interval are grouped together. The first group consists

of landmarks viewed in the first iteration. Every other group

consists of previously grouped and newly observed

landmarks. The first group is aligned to the global map by

performing a Least Square Fitting (LSF) [8] between the

landmarks relative locations and their first observations. This

assumes that the viewpoint in the first iteration was at

location (0,0,0). Every other group has LSF performed using

the previously mapped landmarks global location’s to their

relative location in the group.

Much of the advantages of the Relative Point algorithm

come from its philosophy of retaining past untransformed

observations. The previous iteration’s untransformed

landmarks are used in landmark registrations. Errors in

current position, perhaps due to dynamic landmarks do not

affect the registration process. After sufficient iterations, a

landmarks grouping is revaluated to maximize its calculation

interval. It is possible to change groupings and to recompute

past iterations since the past untransformed observations are

available.

During the regrouping process, there are enough iterations

available to identify dynamic landmarks. Pair wise

comparisons can be made using the past untransformed

observations. Landmark pairs with a low standard deviation

of distance to each other over a time interval can be binned

together. An approximation can be made that only one

landmark per bin needs to be compared against another bin.

Two heuristics are used: if one bin has a majority of

landmarks the algorithm can be stopped, and to prioritize

bins with past positive comparisons. The dynamic detection

algorithm is O(nlogn), even if a high percentage of

landmarks are uncorrelated.

Landmarks are grouped together with other landmarks that

are observed at the same time. A group is created a few

iterations after a landmark is first seen. These first groupings

are revaluated later to create groups with larger calculation

intervals, and to perform dynamic point detection. Local

relative maps are computed for each group, which are then

joined with LSF to form a global map. Current position is

recalculated every iteration by comparing currently seen

landmarks to their global positions using LSF. Current

position is used locally for matching landmarks due to

backtracking and globally for closing the loops. It is possible

to completely avoid the use of current position by instead

relying on landmark merging. The Relative Point algorithm

only recomputes landmarks seen in the current observation

and is shown to be O(nalogna) where na is the average

quantity of observed points. The total quantity of landmarks

A Relative Point Algorithm

does not affect the execution speed. The Relative Point

algorithm is shown to have a quick base speed, operating at a

few milliseconds with a hundred average observed

landmarks. It is also shown to have comparable accuracy to

a 6D no odometry EKF, and is able to identify dynamic

points.

II. DESCRIPTION

The Relative Point algorithm consists of many object

oriented classes. These classes are described in the four

different phases of the algorithm: registering points,

computing groups, creating groups, and global matching.

A. Registering Points

The Point class represents an observation of an

untransformed point. It consists of a (x,y,z) location and a

time variable describing which iteration the point is observed

in.

The RltPoint class consists of a circular array of Points. Its

main responsibility is to enumerate Points given a time

interval.

The RltPointCharting class charts a reference to every

RltPoint seen in a given iteration. Its main responsibility is

to enumerate a list of RltPoint references given a time

interval. It uses a hash table for duplicate detection. It is used

in both point matching and group creation.

The OVLPQuadTree is an overlapping quadtree that

performs spatial subdivision for point matching. Each cell in

the quadtree overlaps adjacent cells by the maximum point

matching bound. This allows the point matching to only have

to query one cell. In experimentation, it is shown to be faster

than a kd-tree and octree depending on the point density.

Point matching begins by initialization the OVLPQuadTree

with the past few iterations of Points. Then

RltPointCharting is enumerated for the past few iterations.

For every RltPoint enumerated, its most recent Point is

obtained and added to the OVLPQuadTree. After the

initialization, every new untransformed point from the

current iteration is compared to Points in the

OVLPQuadTree. If an untransformed point matches, it is

added to the matching RltPoint. Otherwise global matching

is used to see if there is a match. Global matching is

described later. If there is still not a match, a new RltPoint is

created. The matching RltPoint is then added to

RltPointCharting for the next iteration.

B. Map Creation

Each RltPoint can belong to multiple groups. The

RltGroupRef class is used to store a reference to each group

a RltPoint is in.

The RltLSF class performs the Least Square Fitting (LSF)

[8] algorithm between two point clouds. It returns a matrix

that can transform the location of a point from one point

cloud to the other.

The RltGroup class stores a reference of every RltPoint in

the group. It is used to compute the RltPoint’s relative and

global locations.

When a Point is added to a RltPoint, the RltPoint notifies

all of its RltGroups using the RltGroupRef. When notified,

the RltGroup adds itself to the list of RltGroups to be

recomputed in the current iteration. Before it does the

computation, the RltGroup first checks to see if every

RltPoint has a new observation in a given iteration. If one

RltPoint does not, it exits.

 The architecture of the Relative Point algorithm is

designed so that the grouping decisions and dynamic point

detection is done at a level above the RltGroup. If there is a

change, a new RltGroup is created. This allows a RltGroup

to use the same three basis points to form the transformation

matrix that makes the relative map translation and rotation

invariant. For a new iteration, first the three basis points are

used to compute the transformation matrix. The basis is

created by setting the first basis point to being at location

(0,0,0), the second one is placed on the negative x axis and

the third is placed on the xz plane.

After the basis transform is computed, each untransformed

point for a given iteration, for each RltPoint is transformed

to relative coordinates. The relative location is added to the

RltPoint’s average relative location. If the RltGroup is

created in the first iteration, every RltPoint’s relative

location versus its first observation is used for LSF. If the

RltGroup is created with previously grouped points, every

previously grouped RltPoint’s relative location versus its

known global location is used for LSF. The matrix returned

by the RltLSF class is used to compute the global location of

RltPoints that have not been previously mapped in other

groups.

C. Group Creation

The RltInterval class stores the time intervals in which a

RltPoint is observed. It is updated every iteration a RltPoint

is seen. Its main function is a combine function performs a

union of two RltIntervals.

The RltUngroupedList class maintains a sorted by iteration

list of RltPoints. It is used to keep track of RltPoints that

have not been grouped yet. This avoids an enumeration over

all RltPoints.

The RltMapper class performs much of the high level

functionality of the algorithm. It is the entry point of the

algorithm and performs the group creation.

When a RltPoint is first created, it is added to a

RltUngroupedList. This list is queried in RltMapper when

checking for RltPoints that have not been grouped yet. When

a RltPoint has sufficient iterations, the group creation

algorithm attempts to create a RltGroup to put it in. That

RltPoint is referred to as the creation RltPoint.

The group creation algorithm starts by obtaining the

iteration that the creation RltPoint is first observed. It then

queries RltPointCharting to create two lists. One list has

RltPoints that are already grouped and present in the interval

of the creation RltPoint. The other list has RltPoints that

have not been grouped yet, and present in the interval of the

creation RltPoint. Both lists are sorted by order of the

greatest quantity of iterations in the interval of the creation

RltPoint.

 Next, RltPoints are selected from both lists to form a

group. It is unlikely that any of these RltPoints are present in

the complete interval of the creation RltPoint. A compromise

of a reduced calculation interval versus number of RltPoints

has to be reached. Either constants can be used to reduce the

interval or a heuristic can be used. The heuristic is to add the

three best previous RltPoints and the creation RltPoint to the

RltGroup and combine their intervals together. Then by

order of best interval, RltPoints from the sorted lists are

tested to see if they would improve the group. The test

consists of combining the interval of a RltPoint to the

RltGroup’s interval. If quantity given by the combined

interval size multiplied by the number of RltPoints increases,

the RltPoint can be added to the RltGroup. RltPoints from

the sorted lists are tested until one RltPoint fails the interval

test.

 Before the RltPoints placement in the RltGroup can be

finalized, dynamic detection is performed. Each RltPoint is

placed in a bin. Using a hash table, the bin stores every

RltPoint the bin has already been compared to, to avoid

duplicate comparisons. For every iteration of the algorithm,

each bin is compare to one other bin that it has not been

compared to before. Using the untransformed points from

one RltPoint per bin, the standard deviation of their distance

to each is other calculated during the RltGroup’s interval. If

the standard deviation is less than a threshold, then the bins

are merged. Otherwise their hash tables are set so the two

bins are not compared to each other again.

The standard deviation threshold is selected by saving the

standard deviation of the first iteration’s comparisons. These

saved standard deviations are sorted from lowest to highest.

The threshold is selected by enumerating the sorted list until

the next standard deviation is percentage wise much larger

then the previous. This operation is integrated into the rest of

the dynamic detection algorithm so it does not require extra

comparisons.

 The dynamic detection has the possibility to degrade to

O(n
2
) if the number of uncorrelated RltPoints is high. Two

heuristics are used that allow the detection to occur at

O(nlogn). One is: that if one bin has a majority of RltPoints,

the dynamic detection runs for one more iteration. The last

iteration compares every bin that the majority bin has not

been compared to, to the majority bin. Any positive

comparisons are merged to the majority bin. The other

heuristic is to prioritize bins that have a positive comparison

in the previous iteration of the dynamic detection. The

dynamic detection is shown to be O(nlogn) even with a very

high quantity of uncorrelated points.

 After the group is created, three RltPoints are chosen to be

the basis of the relative map. If the three basis RltPoints are

collinear then the basis will not be rotational invariant. Care

is taken to chose RltPoints that are spaced far apart and non

collinear.

 The group creation can be run several times for each

RltPoint. It is first run a few iterations after a RltPoint is first

seen to initially place the RltPoint on the map. It can then be

run a second time after more iterations have occurred.

Additional grouping can be delayed up to the point where the

RltPoint is no longer visible. The first RltGroup grouping

checks periodically to see if there is at least one RltPoint in it

that does not have a second grouping. If every RltPoint has a

second grouping, that RltGroup is redundant and removes

itself from the map.

D. Global Matching

If an untransformed landmark observation fails to match to

the previous iterations untransformed observations, there is

the potential that the landmark has been seen before, but not

recently. This can occur when the viewpoint is backtracking

or closing a loop. In this case, global matching is used. The

Fig. 2. Side view of the figure eight path of the simulation.

Fig. 1. Top view of the figure eight path of the simulation.

Fig. 3. Close up of the figure eight. The Green boxes are where RltPoints

are mapped to, red boxes are the current observation. The lines go from the

centriod of each RltGroup to every RltPoint in it.

matching uses current position. Current position is generated

by performing a LSF using the current untransformed

observations, compared to their global positions.

Current position is used to transform the untransformed

landmark into global space. It is then matched to the global

overlapping quadtree. If there is a successful match, it is

added to that RltPoint and thus RltPointCharting, so the next

iterations untransformed observation will automatically

match to it. Note that in the case of backtracking, the current

position needs only to be locally accurate as the current

position is directly related to the map. However, in order to

successfully close the loop, the current position needs to be

globally accurate within the matching bound.

There is the possibility that if an untransformed

observation has sufficient observational noise and with

current position error, an untransformed observation can fail

to match to its RltPoint global location. If this happens, a

new RltPoint is created. After a few iterations of averaging

its relative location, the new RltPoint’s global location

should be approximately the same as the one it should have

matched to. If this occurs a merging routine detects this

situation and merges the two RltPoints. RltPoints are merged

by copying over the untransformed observations, from the

newer RltPoint to the older one. Then the older RltPoint is

recomputed over its now larger time interval. It is possible

not to use current position at all and instead rely on the point

merging. This would come at a cost of higher overhead.

III. RUN TIME PERFORMANCE

The Relative Point algorithm is tested in a simulation of a

figure eight path. The results are shown in Figure 1, Figure

2 and Figure 3.

The simulation starts at the middle and travels the right

loop counter clockwise with a slight incline. When it reaches

the middle it is well above the starting point. It then travels

the left loop clockwise with a slight decline, returning to the

starting point when the left loop is complete.

Figure 4 shows the execution time for a simulation of the

figure eight seen in Figure 1. Notice that the linear regression

of the execution time is flat. This verifies that the Relative

Point algorithm’s run time is proportional to the average

quantity of points observed in a given iteration.

Figure 5 shows the execution speed of the Relative Point

algorithm with increasing point densities of the figure eight

simulation. The density is the average number of points per

Execution time

0

0.001

0.002

0.003

0.004

0.005

0.006

1

5
0
2

1
0
0
3

1
5
0
4

2
0
0
5

2
5
0
6

3
0
0
7

3
5
0
8

4
0
0
9

4
5
1
0

5
0
1
1

5
5
1
2

6
0
1
3

6
5
1
4

Iteration

T
im
e
 (
s
e
c
o
n
d
s
)

Execution time ma

Linear (Execution time ma)

Fig. 4. Execution time of the Relative Point algorithm with approximately an

average of 100 points per a given observation. The linear regression is flat

denoting that the average time does not increase as more points get mapped.

Quadtree with Octtree replacement at 400

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

100 150 200 250 300 350 400 400 450 500 550

Point density

T
im
e
 (
s
e
c
o
n
d
s
)

Quad combo with Oct

nlogn

n

Fig. 5. Execution time with different average point densities of the figure

eight. The quadtree structure degrades and become polynomial at the 400

points per 100 unit length density. It is replaced by an octree at the 400

point density. The octree has a high initialization but retains its O(nlogn)

computation complexity.

Fig. 6. Dynamic point detection with 0% to 40% points being uncorrelated.

Only the 40% is near the nlogn line.

Fig. 7. Dynamic point detection with 40% to 50% points being

uncorrelated. Only at about the 47% line does the algorithm start to

degrade.

Fig. 8. Comparison of the Relative Point algorithm to the EKF.

100 unit length. The viewing frustum is 70 units length but

due to overlaps in turns the average density is approximately

the same number as the average points per iteration. It was

found that the algorithm starts to become polynomial as the

point density increases. This was shown to be due to the

quadtree losing its O(nlogn) execution time. At the 400 point

density, the quadtree is replaced with an octree. A kd-tree is

tested but is shown to be slower than both the quadtree and

octree. The octree has a higher initialization but retains its

O(nlogn) execution time.

The dynamic detection algorithm is evaluated for different

percentages of uncorrelated points. Figure 6 shows the

results of the percentage of uncorrelated points being

between 0 and 40%. Notice that only the 40% line

approaches O(nlogn). Figure 7 shows that the dynamic

detection only starts to degrade at about the 47% line.

IV. ACCURACY COMPARISON TO EKF

The Relative Point algorithm is tested against a 6D no

odometry EKF [9] obtained from the Mobile Robot Toolkit

[10]. The point density is reduced to 25 points per 100 units

length to allow the EKF to run. The observation noise is

white Gaussian noise. Since the point density has a random

distribution, reducing the density further can cause the

number of observed points to go below the minimum for the

Relative Point algorithm. Figure 8 shows the landmark error

for 900 iterations. Unfortunately at about 900 iterations, the

EKF run time was approaching 1 second per iteration and

slowing down further, so the testing stopped. The average

Relative Point algorithm run time was about 1 ms.

Figure 8 and Figure 9 shows that the accuracy of the

Relative Point algorithm is similar to the EKF. Notice in

Figure 8, that spikes in errors occur in similar places. The

Relative Algorithm has sharper spikes of errors and then

reductions due to the accuracy increases of the regouping

process. Notice that in some places in Figure 9, the Relative

Algorithm has greater location error then the EKF even

though its landmark positions are more accurate for the same

time iteration. This is due to the fact that the Relative

Algorithm position is not cumulative. The accuracy of

current position in the Relative Algorithm is related to the

accuracy of the map, and the noise in the current

observations.

Figure 10 shows the position error if the viewpoint does

not move in the simulation. For both algorithms the error

decreases.

Both algorithms are tested with dynamic points. Not

surprisingly the EKF loses track while the Relative Point

algorithm is able to identify and not use the dynamic points

for the map. It is interesting to note that even before the

dynamic point detection, the Relative Point algorithm is

more robust than the EKF due to the use of untransformed

observations for point registration.

Fig. 9. Position error of the EKF versus Relative Point algorithm.

Fig. 11. Landmark accuracy of 40 passes of the figure eight.

Fig. 10. Landmark error with a stationary viewpoint.

The Relative algorithm is tested with 30% of the point in

the figure eight simulation being dynamic. The mapping

errors are slightly higher than the simulation without noise,

but the error is small enough so that the algorithm can close

the loop. The increase of errors can perhaps be due to having

less static points available for the map, or perhaps due to

dynamic points crossing static ones and creating point

registration issues.

The purpose of the comparisons is not to rank the

accuracy of the algorithms versus the other. Rather it is to

verify that the Relative Point algorithm has similar accuracy

to an implementation of an EKF. It is interesting to note that

even though the algorithms are different, the increases in

landmark error appears correlated between the two

algorithms.

V. LONG TERM ACCURACY TESTING

Figure 10 poses an interesting question. If the landmark

error decreases after many iterations where the viewpoint is

stationary, should the landmark error decreases after many

loops of the figure eight?

Figure 11 shows the landmark error of 40 passes through

the figure eight. The landmark error in Figure 11 decreases

similarly to Figure 10, which has a stationary viewpoint.

It is interesting to look at position error in y direction

shown in Figure 12. The position error in y direction is

similar to the x and z graphs so they are not shown. The error

is periodic and after many runs, the error seems to converge

rather than decrease. It is not known why the error does not

further decrease to zero. There can be an issue with bias in

the simulated noise or there can be an issue with the Relative

Point algorithm. Perhaps the fact that the comparisons are

discretized into groups leads to the result shown in Figure

12. The error though is very small considering the path

length is about 1200 units and the observational noise is a

maximum of 1 unit for each direction.

VI. CONCLUSION

The Relative Point algorithm has a worst case

computation complexity of O(nalogna), where na is the

average quantity of points visible at the same time. The

computational complexity is dependent on the data structures

used, in particular the structure used to do the point

matching. It is important to tune the quadtree or octree so

that it maintains its O(nlogn) computation complexity. The

average computation time of the 550 points per 100 units

figure eight simulation is 18 ms per iteration where there is

an average of 537 points per observation and 8980 total

points on an AMD 64 3400+. The Relative Algorithm is able

to identify dynamic points in O(nlogn) time, and is shown to

work with a large percentage of points being dynamic.

The accuracy of the Relative Point algorithm is compared

to a 6D EKF implementation that does not use odometery.

The accuracy of the Relative Point algorithm is shown to be

comparable to the EKF.

The accuracy of the Relative Point algorithm is evaluated

by having the robot loop through the same figure eight many

times to see if the error approaches zero. After many runs,

the error appears to be reduced to having a small bias. It is

not known if this bias is due to the algorithm, or due to a bias

in the noise of the simulated environment.

REFERENCES

[1] M. Dissanayake, P. Newman, S. Clear, H. Durrant-Whyte, M. Csorba,

“A Solution to the simultaneous localization and map building

(SLAM) problem,” IEEE Transactions on Robotics and Automation

V 1713 Jun 2001

[2] L. M. Paz, J. D. Tardos and J. Neira, “Divide and Conquer: EKF

SLAM in O(n),” IEEE Trasnactions on Robotics. Volume 24, No. 5,

October 2008.

[3] S. Thrun, W. Burgard, D. Fox. “Probabilistic Robotics,” MIT PRESS,

Cambridge, MA, 2005.

[4] T.D. Barfoot, “Online visual motion estimation using FastSLAM with

SIFT features,” IROS 2005

[5] B. Lisien, D. Morales, D. Silver, G. Kantor, I. Rekleitis, H. Choset,

“Hierarchical Simultaneous Localization and Mapping,” Proceedings

of the 2003 IEEERSJ Intl. Conference on Intellgent Robots and

System Las Vegas, Nevada, October 2003.

[6] M. Csorba, “Simultaneous Localisation and Map Building,” PhD

Thesis, University of Oxford, 1997.

[7] P. Newman, “On the Structure and Solution of the Simultaneous

Localisation and Map Building Problem,” PhD thesis, University of

Sydney, 2000

[8] K. S. Arun, T.S Huang, and S. D. Blostein, “Least square Fitting of

two 3D point sets,” IEEE Transaction on Pattern Analysis and

Machine Intelligence, 9(5) 1987 pp. 698-700

[9] J. L. Blanco, “Derivation and Implementation of a Full 6D EKF-based

Solution to Bearing Range SLAM,” Technical Report, Perception

and Mobile Robots Research Group, University of Malage, Spain,

2008

[10] Mobile Robot Toolkit 6D-SLAM, http://www.mrpt.org/6D-SLAM,

retrieved January, 2011

Fig. 12. Position error in y direction for 40 passes of the figure eight.

